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Least dissipation cost as a design principle for robustness and function of cellular networks
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From a study of the budding yeast cell cycle, we found that the cellular network evolves to have the least
cost for realizing its biological function. We quantify the cost in terms of the dissipation or heat loss charac-
terized through the steady-state properties: the underlying landscape and the associated flux. We found that the
dissipation cost is intimately related to the stability and robustness of the network. With the least dissipation
cost, the network becomes most stable and robust under mutations and perturbations on the sharpness of the
response from input to output as well as self-degradations. The least dissipation cost may provide a general
design principle for the cellular network to survive from the evolution and realize the biological function.
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Understanding the function and stability of the cellular
network requires a global characterization of the system. The
nature of the network has been explored through various ex-
perimental techniques [1,2]. It is found that cellular networks
are often quite stable and robust against intrinsic and envi-
ronmental perturbations. There are an increasing number of
bioinformatic studies on the global topological structures of
the networks [3], as well as some studies from a physical
perspective through underlying chemical reactions on the
network robustness [2,4-7]. Recently, efforts have been
made in understanding the biological function from an en-
ergy landscape perspective [8—15]. The advantage of this ap-
proach is that both global and local properties of the network
can be explored in fluctuating environments [16,17]. In fact,
explicit illustrations of the underlying energy landscape and
robustness for MAP Kinase signal transduction, yeast cell
cycle, and gene regulatory networks have been given re-
cently [12—-15].

These studies provided us insight into understanding the
robustness of networks with a finite number of deep basins
of attractions either through a funnel (one basin of attraction,
for MAPK or yeast cell cycle) or multiple funnels (several
basins of attractions for gene regulatory networks). The deep
basins of attractions of the landscape might be the result of
the evolution selection to perform the biological function and
maintain the robustness. The question is then how the net-
works realize that. Cellular networks are open nonequilib-
rium systems due to interactions and exchanges with the en-
vironments. At steady state, both the steady-state probability
or the corresponding landscape and the local flux are needed
to characterize the nonequilibrium network. Contrary to the
situation for the equilibrium case where the steady-state
probability can characterize the whole system, the local flux
is not necessarily zero in the nonequilibrium case because
the detailed balance may not be satisfied. For an open non-
equilibrium network, there are dissipation costs from the ex-
change with the environments which can be described using
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the underlying landscape and the flux for the system. Here
we provide a possible evolution scenario: The network may
have evolved to minimize the dissipation cost to realize the
biological function, robustness, and structurally stability
against genetic and environmental perturbations. Minimizing
the dissipation cost might provide a design principle for evo-
lution selection of biological functions and robust networks.

To explore the dissipation cost of a cellular network, we
will use the budding yeast cell cycle as an example. We will
summarize the previous robustness and landscape investiga-
tions [14] in Fig. 1 to serve as a basis for the current study. A
network wiring diagram based on the crucial regulators was
constructed [4,5] as shown in Fig. 1(a).

In Fig. 1(a), each protein node [5] is assumed to have only
two states S;=1 and S;=0, representing the active and inac-
tive states of the protein. There are 11 protein nodes in the
network wiring diagram and all together 2'! states. Each
state can be represented by S with a distinct combination of
the on and off of the 11 protein nodes of Cln3, MBF, SBF,
CInl-2, Cdhl, Swi5, Cdc20, Clb5-6, Sicl, Clbl-2, and
Mcml represented by {S,,S,,S5,...5;,}=S. — arrows repre-
sent positive regulations or activations (1). 4 arrows repre-
sent negative regulations or repressions (—1). The loop rep-
resents self-degradations to the nodes which are not
regulated by others.

The significant intrinsic and extrinsic fluctuations within
the cell imply that we should follow the probability evolution
rather than deterministic dynamics in the network. The tran-
sition matrix 7 can be simplified by assuming the Markovian
process [14,18]. The Markovian approximations is intro-
duced here for simplicity. There can be time delays, for ex-
ample, due to the presence of translation step in addition to
transcription. This can be rendered by the introduction of
more variables such as mRNA. Therefore we introduce the
transition matrix: T{ Sl(t’),Sz(t’),...,S“(t’)|Sl(t),S2(l),4..,S“(z‘)}
=H}:11T{ S.(]S,(0.8,(0)....S, (0} where ¢ is the current time and ¢’
is the next moment. The input-output switching response
function has a similar form often seen in neural science [19].
The form of the response function although similar to the
neural science can actually approximate the nonlinear in-
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(b)

crease of the protein number production upon regulations of
others. It has been widely used in the literature [2,4]. The
transition matrix can be defined as (with nonzero input):
Ty Si(t’)\Sl(r),Sz(r),...S“(t)}=% + Stanh[uS ! a;S;(].  Further-
more, TS[_(,r)|Sl(,)’SZ(,),‘_.S“(,)=l—c when there is no input of
activation or repression [E}zllaijS j(t)=0], ¢ is a small number
mimicking the effect of self-degradation. Here a;; is the ar-
row or link representing the activating (+1) or suppressing
(=1) interactions between the ith and jth protein nodes in the
network, which is explicitly shown in the wiring diagram of
Fig. 1. u is a parameter controlling the sharpness or sensi-
tivity of the response from input to output. L can also be a
measure of the fluctuation strength (for example, mimicking
the effects of temperature) [14]. The fluctuation referred in
this paper is a measure of the environmental noise or external
noise, not directly the intrinsic noise from protein number
fluctuations. When the environmental noise is low, then the
response will be sharper.

With the transition probability among different states
specified, we can write down the master equation for each of
the 2! states as dP;/dt=—3,T;P+3;T;P; where T; (T},
represents the transition probability from state i (j) to state j
(i) specified in details above. Here i and j are from 1 to
21122048 states and 3= P;=1.

The steady-state probability distribution can be solved nu-
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FIG. 1. (a) The yeast cell cycle
network scheme: wiring diagram,
— arrow represents positive acti-
vating regulations (1); - arrow
represents negative suppressing
regulations (—1); loop represents
self-degradation. (b) The spectrum
and the histogram or the distribu-
tion of the potential energy U. (c)
An illustration of the funneled
landscape of the yeast cell cycle
network. The global minimum of
the energy is at the G1 state.

(c)

merically [14]. One can link the steady-state probability dis-
tribution with the generalized potential energy as U,
=—In P; [9,10,12-15].

Figure 1(b) shows the spectrum as well as the histogram
or distribution of U (U=~In Pye,qy-siare)- We can see that the
distribution is approximately Gaussian. The global minimum
of U was found to be the same state as the fixed point [the
stationary G1 state=(0;0;0;0;1;0;0;0;1;0;0)] for the
yeast cell cycle [14]. In quantifying the stability or robust-
ness, we previously defined the robustness ratio (RR)
[12—14] for the network as the ratio of the gap, SU, the
difference between this global minimum of GI1 state
Uslobal minimum @nd the average of U (mimicking the slope of
the landscape), (U) versus the spread or the half width of the
distribution of U (mimicking the roughness or trapping of the
landscape), When the RR is significantly larger than 1, the
global minimum (G1 state) is well separated and distinct
from the average of the network potential spectrum. Since
P=exp{-U(x)}, the weight or population of the global mini-
mum (G1 state) will be dominant. This leads to the global
stability or robustness discriminating against others. It shows
a funnel picture of energy going downhill toward the G1
state in the evolution of network states, as illustrated in Fig.
1(c). So the RR gives a quantitative measure of the shape or
topography of the underlying landscape.

The network is an open system in nonequilibrium state.
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FIG. 2. Robustness and stability versus dissipation cost of the yeast cell cycle network for various protein self-degradation rate. (a)

Self-degradation rate versus entropy production rate
versus entropy product1on

Although we can obtain the steady-state probability and can
define an equilibriumlike quantity, the local flux from j to i
(Fjlsteady state ljPlsteacly state+ JlP]steady stale) 15 not necessarl]y
equal to zero (no detailed balance). The flux defines a gen-
eralized force for the nonequilibrium state along with the

assoc1ated generalized chemical potential (from j to i) Ay

=In ( ) [20-22]. There is a mapping between the cellular
networks and electric circuits. The flux F;; corresponds to
current /, and the chemical potential A;; corresponds to volt-
age V. The nonequilibrium cell network dissipates energy
just as the electric circuits. In the steady state, the heat loss
rate is related to the entropy production rate. The entropy
production or dissipation characterizes “time irreversibility”
and provides a lower bound for the actual heat loss in the
Boolean network [11,20-22]. The total entropy change is
equal to the part from the system or source plus the part from
the bath or sink (dissipation). Since in steady state the en-
tropy change of the system is equal to zero, the total entropy
change (source) is equal to the entropy change of the sink
(dissipation). The total entropy change (source) =XF,jA;j is
the entropy production and the sink term is dissipation.
Therefore in steady state, knowing the entropy production,
we know the dissipation quantitatively. The entropy S from
the system part is defined as S —2,P; In P; and entropy pro-

.~ (system plus bath) is given

mt

duction rate (per unit trme)
S0

by = =2F;A;=%,T;P;In ( ’). The entropy production

rate is a characterization of thé global properties of the net-

work.

Equipped with the quantification of landscape and flux
from the previous work [14] as illustrated in Fig. 1, we are
now ready to explore the global nature of the network and
the interrelationships between the robustness and stability
with the dissipation cost in terms of entropy production un-
der genetic and external perturbations (under different re-
sponses w, self-degradations C, and mutations).

Figure 2(a) shows the self-degradation versus entropy
production rate Z—f (at w=5). In [14], we show a less degra-
dation ¢ gives more robust network with large RR. Here we

(b) Robustness ratio (RR) and probability of the biological path toward the G1 phase
for various protein self degradat1on rates.

see that less self-degradation leads to less dissipation costs
and less dissipation cost %f leads to more robust network
with large RR and larger stability of the biological path to-
ward the G1 phase.

Figure 2(b) shows the RR of the underlying energy land-
scape as well as the steady-state probability of the biological
path toward the G1 phase versus entropy production % with
different self-degradation parameters ¢ (at u=35).

We observe in Fig. 2(b) a relatively sharp decrease of the
robustness through the RR and path probability P, upon
changing the self-degradation rate c. We noticed from previ-
ous studies that both the RR and P, drop with an increase
of self-degradation ¢ (Fig. 7 in [14]). So the landscape
changes significantly with the self-degradation. The entropy
production rate is the accumulated effects from the combina-
tion of both landscape and flux. Therefore the entropy pro-
duction rate is in general a nonlinear function of the accu-
mulated effects of landscape and flux. The sharper transition
of entropy production rate with respect to the stability upon
changing the self-degradation might be from the more sensi-
tive dependence on the accumulated landscape and flux.

We identified the preferential global pathway toward the
global minimum G1 by following the most probable trajec-
tory in each step of the kinetic moves from the deterministic
equations of the corresponding to the master equations to-
ward G1. Therefore the global path is referring to the deter-
ministic path without the perturbations and noise. We ex-
plored the sum of the probabilities passing through this path
in various conditions. When the perturbation or noise is
small, we expect this path to be similar to the actual path.
When the perturbation or noise is larger, we expect the actual
path starts to deviate from this path. We expect to see less
partition of the probabilities on this path. Obtaining the ac-
tual most probable path under various conditions is an im-
portant and challenging issue. We plan to investigate that in a
future study.

The protein can be either 1 or 0, representing active or
inactive. The 11 proteins are arranged in a vector form to
represent the state of the system as (Cln3; MBF; SBF;
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FIG. 3. Robustness and stability versus dissipation cost of the yeast cell cycle network for different responses or noise. (a) Response u
versus entropy production rate Z—f. (b) Robustness ratio (RR) as well as steady-state probability of the biological path toward the G1 phase

. dS . .
versus entropy production °,- for different responses or noise.

Clnl,2; Cdhl; Swi5; Cdc20; Clb5,6; Sicl; Clbl,2; Mcml).
The most probable global path follows the states 1 — 13 se-
quentially toward G1 from the start signal where the start
signal is in state sequence 1 given by (1;0;0;0;1;0;0;0;1;0;0).
Three excited G1 states are in sequence 2, 3, 4, given, re-
spectively, by (0;1;1;0;1;0;0;0;1;0;0), (0;1;1;1;1;0;0;0;1;0;0),
(0;1;1;1;0;0;0;0;0;0;0). The S phase is in state with sequence
5 given by: (0;1;1;1;0;0;0;1;0;0;0). The G2 phase is in state
with sequence 6 given by (0;1;1;1;0;0;0;1;0;1;1). The M
phase is in states with sequence 7, 8, 9, 10, 11, given, respec-
tively, by (0;0;0;1;0;0;1;1;0;1;1), (0;0;0;0;0;1;1;0;0;1;1),
(0;0;0;0;0;1;1;0;1;1;1), (0;0;0,0;0;1;1;0;1;0;1),
(0;0;0;0;1;1;1;0;1;0;0). The another excited G1 state is with
sequence 12 given by (0;0;0;0;1;1;0;0;1;0;0). Finally, the sta-
tionary G1 phase is in state sequence 13 given by
(0;0;0;0;1;0;0;0;1;0;0). The most probable path turns out to
be the biological path going through G1—-S—G2—M
—G1 [14].

The rational of considering not only the G1 phase, but
also the whole biological path of the cell cycle is as follows:
As the cell cycle progresses, cells have to visit many differ-
ent states on the biological path, not just stay in one state.
The state of the G1 phase can be stable, but this may not
imply that other states of the cell cycle are also stable. To
create a robust cell cycle network all important states (local
minimums on the potential) have to be investigated not just a
stationary G1 phase (the global minimum). Therefore we in-
clude the probabilities of all the states on the biological path.
In [14], we show a less degradation leads to more weight or
stability for the G1 phase. Here we see that less self-
degradation leads to less entropy cost and when entropy pro-
duction ‘Zl—f decreases, the probability of the whole biological
path including the stationary G1 phase also increases. This
means that a less dissipation cost gives a more probable and
stable biological path to the stationary G1 phase and there-
fore a more stable and robust network.

As mentioned before, robustness ratio here is a measure
of the stability of the global minimum G1. If we consider the
whole biological path, then the 13 local minimum states vis-

ited by the biological path should be grouped together. We
expect a positive correlation between the stability of the glo-
bal minimum G1 measured by the RR and that of 13 local
minima constituting the whole biological path.

In Fig. 3(a), we plot the w versus entropy production (per
unit time) or the dissipation cost of the network, %. In [14],
we show sharper response or less noise (larger w) leads to
more weight or stability for biological path including the G1
phase. Here we see that a sharper response and less noise
lead to less entropy cost, and when the entropy production %
decreases, the probability of a biological path including the
stationary G1 phase also increases.

In Fig. 3(b), we plot the robustness of the network and RR
as well as the steady-state probability of the biological path
toward the G1 phase versus entropy production (per unit
time) or the dissipation cost of the network, %, for different
u (fixed ¢=0.001). In [14], we show that a sharper response
or less noise (larger w) in general leads to a more robust
network with larger RR. We also show in that the presence of
the peak of the RR is due to traps in the landscape [14]. On
the right-hand side of the peak of the RR and steady-state
probability of the biological path toward the G1 phase in Fig.
3(b), as the noise increases [u decreases in Fig. 3(a)], the
network quickly becomes unstable (smaller RR below 2.5
and probability of the biological path is below 0.3) and dis-
sipation cost increases significantly. Here, we can see when
the entropy production rate decreases, the RR and probability
of the biological path toward G1 increase. The left-hand side
of the peak of the RR and steady-state probability of the
biological path toward G1 in Fig. 3(b) corresponds to a
stable regime. The peak represents the most stable state. At
the zero-noise limit, there are no fluctuations, so the system
can easily get trapped in the local minimum of energy (local
maximum of the steady-state probability). Increasing the
noise level slightly from zero (larger w) can help to adjust
the system by overcoming the local traps to reach to the
global minimum of energy [14]. Above all, we can see that a
sharper response or less noise environments normally leads
to less dissipation; the less dissipation cost gives a more
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FIG. 4. Stability and robustness versus dissipation cost of the yeast cell cycle network for different perturbations through mutations. (a)
Steady-state probability of G1, P, versus entropy production rate 2 @ 5 for different mutations. (b) Robustness ratio (RR) versus steady-state

probability of G1, P, for different mutations.

probable and stable biological path and stationary G1 phase
and therefore a more stable and robust network in general.

We also observe in Fig. 3(b) a relatively smooth decrease
of the robustness through the RR (from high values to be
below 2) and path probability P,,, (from high values to
below 0.2) upon changing the response wu (from high values
to be below 1). We noticed from previous studies that both
the RR and P, drop sharply with the decrease of response
wu (Fig. 6 in [14]). So the landscape changes significantly
with the response. As mentioned above, the entropy produc-
tion rate is the accumulated effects from the combination of
both landscape and flux. So the entropy production rate is in
general a nonlinear function of the accumulated effects of
landscape and flux. The smoother transition of entropy pro-
duction rate with respect to the stability upon changing the
response might be from the less sensitive dependence on the
accumulated landscape and flux.

Figure 4(a) shows the steady-state probability of the G1
(with w=5 and ¢=0.001) versus dissipation cost of the net-
work against various mutations or perturbations through de-
leting an interaction arrow, adding an activating or repressing
arrow between the nodes that are not yet connected in the
network wiring diagram in Fig. 1, or switching an activating
arrow to a repressing arrow or vice versa and deleting an
individual node. Upon mutations, when the entropy produc-
tion is smaller (larger), the G1 state tends to be more (less)
stable and dominating. This is the regime where the under-
lying energy landscape is a funnel. We noticed that there are
steady states with low entropy and low probability. Those are
the outliers. They correspond to perturbed underlying energy
landscapes which are either not very stable and unable to
perform biological functions or possibly become signifi-
cantly perturbed cell cycles (i.e., cycles without a stable G1
phase as in wild-type fission yeast cells). This implies that
the dissipation cost and stability of the network through the
G1 state might be more correlated in a relatively high-
stability region while less correlated in a low-stability region.
In other words, since the low-stability region often corre-
sponds to a more fluctuating region, the dissipation cost is a

less reliable measure of the network property. Therefore in
this outlier regime, we may need to use both dimensions to
explore the network, one for stability and one for function
through dissipation cost.

Figure 4(b) shows the P, versus robustness ratio under
various mutations mentioned above. We see that a larger
(smaller) RR corresponds to a larger (smaller) Pg;. Since
less entropy production leads to a more stable network
(larger steady-state probability of G1, Pg,), therefore less
entropy dissipation also leads to a larger RR and therefore
more robust network. Random networks typically have a
smaller RR and a smaller probability of G1 compared with
biological ones, corresponding to rough underlying energy
landscape. They are less stable and robust. The biological
functioning network is quite different from the random ones
in terms of the underlying energy landscape and stability. In
the low-RR region, the robustness and entropy dissipation is
less correlated. These networks are less of biological rel-
evance.

Exploration of the relationship among statistical fluctua-
tions, stability, robustness, and dissipation cost of networks
here can be important for network design. The nature might
evolves such that the network is robust against internal (in-
trinsic) and environmental perturbations and perform specific
biological functions with minimum dissipation cost. From an
evolution point of view, the fact that robustness and stability
are often correlated with the entropy production rate may
reflect the fact that more cost saving requires the system to
have less fluctuations and perturbations, leading to a more
robust and stable network. This may provide us a design
principle of optimizing the connections of the network with
minimum dissipation cost. In our study here this is also the
equivalent of optimizing the robustness or stability of the
network. The less dissipation cost or robust landscape there-
fore might be a quantitative realization of the Darwinian
principle of natural selection at the cellular network level.
The nature might evolve such that the biological networks
become robust against perturbations and perform specific
biological functions with minimum dissipation cost. The dis-
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sipation criterion was also used in the context of constrained-
based modeling of metabolic network [23].

Probing a nonequilibrium network is crucial for uncover-
ing the mechanisms. We believe the dissipation cost is a
quantitative measure of the nonequilibrium property which
can be used to effectively show the noise level of the inher-
ent system as seen in Fig. 3(a).

It is worthwhile to mention that there is a difference be-
tween cellular networks and the protein folding and binding
problem [8,9]. In protein folding and binding, it is typically
assumed that the quasiequilibrium condition and system
obey the usual detailed balance conditions [8,9]. Therefore
one can define the usual energy and potential. On the con-

PHYSICAL REVIEW E 77, 031922 (2008)

trary, cellular networks are in a nonequilibrium state. There
is no apparent energy or potential to use. We pointed out that
we could still define the landscape as the —In Pycaay-giates DUt
we also need to take into account of the flux in addition to
characterizing the whole nonequilibrium network. The en-
tropy production rate which combines both the information
of steady-state probability P and local flux can be used to
globally quantify the nonequilibrium networks. An interest-
ing and challenging question is to study the dissipation along
the biological path. We will address this in a separate study.
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